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LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF

A TWIN-TURBOFAN SUBSONIC TRANSPORT WITH

NACELLES MOUNTED UNDER THE WINGS

By Francis J. Capone

Langley Research Center

SUMMARY

An investigation has been conducted in the Langley 16-foot transonic tunnel to deter-

mine the longitudinal aerodynamic characteristics of a 0.062-scale, twin-turbofan sub-

sonic transport at Mach numbers from 0.55 to 0.85 and angles of attack from about -2 °

to 6 ° . The engine nacelles were mounted under the wings. The Reynolds number based

on wing mean aerodynamic chord varied from 2.25 x 106 to 2.70 x 106 . The effects of

model-component buildup, horizontal-tail effectiveness, boundary-layer transition, and

wing and nacelle modifications were measured. The model was mounted by using a sting-

strut arrangement with the strut entering the model through the underside of the fuselage

approximately 65 percent of the fuselage length rearward of the model nose. Strut-

interference effects were measured and applied as a correction to the data.

For the small range of tail deflection (-0.5 ° to 0.5o), there was little or no effect of

horizontal-tail deflection on lift-curve slope, model stability, drag coefficient, or maxi-

mum lift-drag ratio. The model with free boundary-layer transition had more lift at high

angles of attack and less stability; and for tail deflections of 0 ° and 0.5 °, the lift coeffi-

cient at which pitchup instabilities occurred was higher than that for the model with fixed

transition. The configuration with a modified wing (reduced wing thickness ratio) and

longer nacelles had greater lift at the same angle of attack and a higher lift coefficient at

which pitchup instabilities occurred than did the basic configuration. The drag-rise Mach

number for the modified configuration was increased by 0.02, and the modified config-

uration had much less drag due to lift at the higher Mach numbers than that of the basic

configuration.

INTRODUCTION

The National Aeronautics and Space Administration has conducted a wind-tunnel

investigation to obtain data for a correlation between wind-tunnel and flight-test results

for a twin-turbofan, short-haul, subsonic transport with engines mounted under the wings.

This airplane is capable of carrying about 100 passengers. This report presents only

the results of the wind-tunnel investigation.



The wind-tunnel investigation was conductedwith a 0.062-scale model in the Langley
16-foot transonic tunnel at Machnumbersfrom 0.55to 0.85and anglesof attack from -2o
to about6°. The Reynoldsnumber basedon wing meanaerodynamicchord varied from
2.25× 106to 2.70x 106. The effects of model-componentbuildup, horizontal-tail effec-
tiveness, boundary-layer transition, andwing andnacelle modifications were measured.

Subsonictransports are frequently designedwith fuselageaftersections that are
nonsymmetrical with a large amountof upsweepon the bottom of the afterbody. The
pressure drag on this section of the fuselagecanbe a large part of the total fuselagedrag.
A recent investigation as reported in reference 1 was concernedwith evaluatingthe sting-
support interference effects of a conventionalstraight sting that enteredthrough the rear
of three subsonictransport models. However, the straight sting required a rather large
cutoUton the afterbody of the fuselage.

The model of the present investigation was mountedin the windtunnel by using a
sting-strut support arrangementwith the strut entering the model through the underside
of the fuselageapproximately 65percent of the fuselage,length rearward of the model
nosewhich minimized alterations to the fuselage. Strut-support interference effects
were determined andapplied as a correction to the measuredaerodynamiccharacteristics.

SYMBOLS

Model forces and momentsare referred to a stability axis system with the model
moment reference center located 82.80centimeters rearward of the model nose corre-
spondingto 22.4percent of the wing meanaerodynamicchord which is approximately at
the nominal center-of-gravity position of the airplane. Dimensions are given in the
International Systemof Units (SI).

A aspect ratio

local wing chord

wing or tail mean aerodynamicchord (Wing_ = 21.17 centimeters)

CA,i

CD

CD,p

nacelle internal axial-force coefficient

drag coefficient, Drag
qS

computed profile drag coefficient

CD,min

2

minimum drag coefficient



CD,trim trim drag coefficient

CL lift coefficient, Lift
qS

CL,M lift coefficient at CD,min

CL,trim trim lift coefficient (lift coefficient at Cm = 0)

CL_ lift-curve slope per degree

C m pitching-moment coefficient, Pitching moment
qS_

0Cm

Cmc L static-longitudinal-stability parameter, OCL

Cm, o pitching-moment coefficient at zero lift

Z_CD,HV

average drag-coefficient increment due to strut interference,

(CD)with strut- (CD)without strut

drag-coefficient increment due to adding horizontal and vertical tails

ACm,av

drag-coefficient increment due to adding nacelle 1 and pylon

average lift-coefficient increment due to strut interference,

(CL)with strut-(CL)without strut

average pitching-moment-coefficient increment due to strut interference,

(Cm)with strut-(Cm)withoat strut

dC D
k M drag-due-to-lift factor,

d(CL- CL,M) 2

L/D lift-drag ratio

(L/D)max maximum lift-drag ratio

(L/D)tri m lift-drag ratio at trim conditions

M free-stream Much number



q free-stream dynamicpressure

R Reynoldsnumber per meter

wing reference area (3674.30centimeters2)

Tt

X,Z

Ot w

6h

Subscripts:

stagnation temperature

wing coordinates

wing angle of attack (1 ° with respect to body center line)

incidence angle of horizontal tail, positive when trailing edge is down

l lower

u upper

Abbreviations:

LER leading-edge radius

WL water line

Model- component designations:

B fuselage plus wing-root-flap actuator fairing

H horizontal tail

N1

N2

T

basic nacelle and pylon

basic nacelle and pylon with rear-end extension

wing trailing-edge-flap actuator fairings (two each located outboard on wing)

V vertical tail

4



W1

W2

W3

basic wing

basic wing plus leading- andtrailing-edge chord extensions

basic wing plus trailing-edge chord extension

APPARATUS

Model

The complete 0.062-scale basic model is shown in the sketch and photographs of

figures 1 and 2, respectively. The model represented a twin-turbofan, short-haul, sub-

sonic transport weighing about 45 000 kilograms that was capable of carrying about

100 passengers at a cruise Mach number between 0.78 and 0.80. The design lift coeffi-

cient is 0.30. Details of the various model components are presented in figure 3.

Fuselage.- Fuselage geometry and cross sections are shown in figures 3(a) and 3(b),

respectively. The fuselage was 171.19 centimeters long and had a fineness ratio of 6.9

based on the maximum body depth. The wing root fairing was located between fuse-

lage stations 54.33 and 109.76. A fairing on the fuselage used to house a wing trailing-

edge flap track and actuator mechanism extended from station 85.04 to 105.03. (See

fig. 3(b).) The wing trailing-edge flaps were not simulated during this investigation.

Basic wing.- The planform geometry of the basic wing (Wl) is shown in figure 3(c).

The basic wing had an aspect ratio of 8.41, a span of 175.59 centimeters, an incidence

angle of 1 °, and a dihedral angle of 6 °. Both the leading and trailing edges had discon-

tinuous sweep. Airfoil ordinates for the basic wing are presented in table I(a). The

model with the basic wing is shown in the photographs of figure 2.

Two modifications were made to the basic wing as shown in figure 3(d). The modi-

fication for wing 2 (W2_ consisted of a 1-percent-chord leading-edge extension and a

15-percent-chord trailing-edge extension, both outboard of span station 32.19 which was

the spanwise location of the break in the leading and trailing edges of the basic wing. The

trailing edge also extended inboard to the nacelle pylon. Photographs of the model with

this wing are presented in figure 4. The modification for wing 3 (W3) involved only a

trailing-edge extension from 15 percent chord at span station 32.19 to 0 percent chord at

span station 65.67. The model with this wing is shown in the photographs of figure 5.

Airfoil ordinates for wings 2 and 3 are presented in table I(b). These ordinates were non-

dimensionalized with respect to the local chords of wing 1. Therefore, these modifica-

tions reduce the wing thickness ratio when based on the chord of the modified wing. For

example, at span station 32.19, the maximum wing thickness ratio for wing 1 (based on the

chord of wing 1) is 0.108, and for wing 3 the maximum thickness ratio is 0.095 (based on



the chord of wing 3). It shouldbenotedthat wings 2 and3 were tested with a different
nacelle from that onwing 1 andwithout the flap-track fairings on the wings. The flap-
track fairing at the wing root, however,was present.

Only the complete modelusing wing 1 includedfairings on the wing for the wing
flap tracks andactuators. A sketch of the fairings is presented in figure 3(e). These
fairings were located at spanstations 40.64and 56.82 and are shown in the photographs

of figure 2.

Nacelles.- Sketches of the two nacelles tested are presented in figure 3(f).

Nacelle 1 (N1) was 34.54 centimeters long and was tested only with wing 1. Nacelle 2

(N2) was similar to nacelle 1 except that the rear portion was extended 7.08 centimeters

resulting in a total length of 41.62 centimeters. This nacelle was tested only with wings 2

and 3. Both nacelle inlets had the same geometry and were located at the same body

station.

Horizontal and vertical tails.- Figures 3(g) and 3(h) show the planform geometry

of the horizontal and vertical tails, respectively. Airfoil ordinates are presented in

tables H and III. The horizontal tail was all-movable with the hinge axis located at fuse-

lage station 160.93.

Model Support System

The present investigation utilized a sting-strut mount in order to minimize the

alterations made to the fuselage for a support system. A sketch showing the various

support systems is presented in figure 6. For determining the aerodynamic characteris-

tics of the model, the model was supported with the strut entering through the underside

of the fuselage at a location approximately 65 percent of the fuselage length to the rear

of the nose as shown by the sting-strut arrangement of figure 6(a). This mounting sys-

tem is also shown in the photographs of figures 2, 4, and 5. This type of strut allowed

for the minimum amount of cutout to the model (as compared with the large amount of

cutout to the models of ref. 1) since the strut chord length at the body juncture was about

25.4 centimeters with a maximum thickness of about 2.54 centimeters.

In order to assess the magnitude of the strut interference, two additional support

systems were used as shown in figures 6(b), 6(c), and the photographs of figure 7. Fig-

ures 6(b) and 7(a) show the model with the strut entering through the top of the model.

A dummy sting strut was attached to the live sting strut through a blade downstream of

the model base. The dummy strut entered through the bottom of the model (at the same

location as the live strut). A positioning pin that was part of the dummy strut fit loosely

into the balance support block and was the only point of contact inside the model. The

loose fit of the pin allowed model deflection with the same aeroelastic support stiffness

as existed with only the live strut present. The support system of figures 6(c) and 7(b)



showsthe model with only the live strut entering through the top of the model (dummy
sting strut removed). The gapsbetweenthe struts andmodel were sealedwith synthetic
spongerubber. Pressure inside the model was continuouslymonitored in order to detect
andwarn of possible leakagethrough the seal if it occurred. Calibrations of normal
force, axial force, andpitching momentwith the model assembledshowedno restraint
due to this method of sealing. It shouldbenotedthat the vertical tail could not be
attachedwhile using the top mount system.

Becauseof the mountingarrangements, the model was tested aboveandbelow the
wind-tunnel center line (fig. 6). Therefore, it was necessary to test the wing-body com-
bination upright and inverted in both wind-tunnel positions in order to determine the mag-
nitude of the wind-tunnel flow angularity. This was accomplishedby using the sting-
strutmdummy-strut combination with the live strut coming into the model from either
the top or bottom as shownin the following table:

Model position
to tunnel

center line

Below
Below
Above
Above

Live strut

Top
Bottom

Top
Bottom

Dummy strut

Bottom
Top

Bottom
Top

Model attitude

Upright
Inverted
Inverted
Upright

WindTunnel and Instrumentation

This investigation was conductedin the Langley 16-foot transonic wind tunnel which
is a single-return, atmospheric wind tunnel with a slotted octagonaltest section andcon-
tinuous air exchange. For models mountedalongthe tunnel center line, the model-
support angle-of-attack mechanismpivots the sting support in such a manner that the
model is close to the center line. However, for the present investigation with its sting-
strut arrangement, that puts the model either aboveor below the tunnel center line, there
is some translation of the modelalong with the rotation. The center of model rotation is
indicated in figure 6.

Aerodynamic forces were measuredwith an internally located, six-component
strain-gage balance. Angle of attack was determined with a pendulum-typestrain-gage
inclinometer located inside the model nose. For the determination of nacelle internal
axial force, stagnationpressures at the nacelle-duct exit were measuredon a pressure-
scanningunit; whereasstatic pressures at the nacelle-duct exit were measuredwith indi-
vidual pressure transducers.



TESTS

This investigation was conductedat Machnumbersfrom 0.55to 0.85and at wing
anglesof attack from -2° to about6°. The Reynoldsnumber basedon the mean aero-
dynamic chord varied from 2.25× 106to 2.70x 106. All model configurations exceptas
notedwere tested with boundary-layer transition strips consisting of No. 120silicon
carbide grit particles sparsely distributed in a thin film of lacquer that was0.25 centi-
meter wide. These strips were located onboth the upper andlower surfaces of the wings
andtails at 10percent of the local streamwise chord, onthe nacelles (outside and inside)
at 0.76 centimeter from the nacelle leading edge,and on the fuselagenose at 2.54centi-
meters from the tip of the nose. The grit size andthe location of the strips were deter-
mined according to the recommendationsof reference 2.

The aerodynamiccharacteristics of the various model configurations were deter-
minedwith the model mountedin the wind tunnel as shownin figures 2, 4, 5, and6(a),
that is, with the strut entering the model from the bottom. The effects of model-

horizontal-tail deflections (5h = 0° and _0.5°), boundary-layer transi-componentbuildup,
tion not artificially fixed, andtwo wing andnacelle modifications were studied.

Sting-strut interference effects were measuredby testing configuration BWlH
(5h = -0.5 °) which was supported by the three methods shown in figure 6. Wind-tunnel

flow angularity was determined by conducting tests of configuration BWl, upright and

inverted, both above and below the wind-tunnel center line. Both configurations BWlH

and BW 1 were tested with transition fixed. The methods of support for this portion of

the tests were summarized in a previous section entitled "Apparatus." Nacelle internal

axial force was determined from measurements of both static and stagnation pressure at

the exit of one nacelle by means of a pressure survey rake that was rigidly attached to

the nacelle.

CORRECTIONS AND ACCURACY

General Corrections

The wind-tunnel flow angularity as determined by tests of the model upright and

inverted, both above and below the wind-tunnel center line, was found to be 0 °. The mea-

sured balance axial force was corrected for nacelle internal axial force shown in fig-

ure 8. The effects of nacelle incidence and the variation of CA, i with angle of attack
were accounted for in applying the correction to the balance axial force.

No corrections have been made for roughness drag due to the grit applied for the

boundary-layer transition strips. These corrections are considered unnecessary at sub-

sonic speeds since the general guideline for the application of transition strips (ref. 3)



and a grit height based on a transitional Reynolds number of 600 were used. (See also

ref. 2.) Corrections to the lift data from either solid-blockage interference or tunnel-

boundary interference effects are not considered necessary. Theoretical calculations

presented in reference 4 for a model with approximately the same wing span and cross-

sectional area have shown that the tunnel-wall lift-interference correction reduced the

angle of attack by 0.02C L. For the model of reference 4, the reduced angle of attack at

C L = 0.5 reduced the drag coefficient by 0.0001. Since there is no Mach number gradi-

ent in the Langley 16-foot transonic tunnel, no corrections for buoyancy are made.

Since the gap between the strut and the model was sealed with the synthetic sponge

rubber, no correctiona are necessary for either the base or balance cavity. An advan-

tage of this type of mounting over that of reference I can be seen in the application of

corrections to the measured aerodynamic characteristics due to the effects of the sting

cavity. It was necessary in the investigation of reference 1 to measure the longitudinal

variation of cavity pressure along the sting and fuselage-sting cavity. In addition to cor-

recting the axial force (to the condition of free-stream static pressure acting across the

sting cavity), an adjustment is necessary to both normal force and pitching moment. This

was done by integrating the pressures along the sting longitudinally and obtaining incre-

mental corrections.

Sting-Strut Interference Correction

The technique used to determine the sting-strut interference effects was similar to

that described in reference 1. Force and moment measurements made with the model

supported with the strut through the bottom of the model (fig. 6(a)) will, of course, contain

an interference term of the bottom strut on the model that must be subtracted from the

measurements made. This interference term can be evaluated from measurements made

when the model is supported as shown in figures 6(b) and 6(c).

When the model is supported with the strut through the top and the dummy strut in

place from the bottom (fig. 6(b)), the measured forces contain interference terms caused

by both the top and bottom struts. The interference term due to only the top strut is con-

tained in the measured data when the model is supported as shown in figure 6(c). There-

fore, subtracting the coefficient data measured when the model is supported as shown in

figure 6(c) from that of figure 6(b) will result in the desired strut-interference term.

The variation of strut-interference terms for lift, drag, and pitching moment with

wing angle of attack for the Mach numbers investigated is presented in figure 9. Shown

are average faired values for each of these components. Corrections to the measured

aerodynamic data were made automatically when processing the data by computer by

inputing a table of the strut-interference terms as a function of the wing angle of attack

at 0.25 ° increments and linearly interpolating between input points.
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Accuracy

The accuracy of datapresentedherein prior to making corrections for strut inter-
ference, basedprimarily on expectedinstrumentation accuracies, is presentedas follows:

M .......................................... i0.007

aw, deg ....................................... +0.10

C L ......................................... +0.004

C D ......................................... ±0.0005

C m ................................... ...... +0.003

5h, deg ....................................... +0.03

PRESENTATION OF RESULTS

The basic longitudinal aerodynamic force and moment coefficients are presented in

figures 10 to 14 as follows:

Configuration 5h, deg Transition Figure

BW 1 and BW1HV

BW1HVN1T

BWlHVN1T

BWlHVN1T

BWlHVN 1 , BW2HVN2,

and BW3HVN 2

-0.5

-.5

0

.5

-.5

Fixed

Fixed and free

Fixed and free

Fixed and free

Fixed

10

11

12

13

14

Various summary plots of the longitudinal aerodynamic characteristics are pre-

sented in figures 15 to 19 as follows:

Figure

Effect of model-component buildup .......................... 15

Computed profile drag coefficients .......................... 16

Effect of horizontal-tail deflection .......................... 17

Effect of fixing boundary-layer transition ............. : ........ 18

Effect of wing and nacelle modifications ....................... 19

DISCUSSION

Effect of Model-Component Buildup

The effects of model-component buildup can be seen by comparing the basic data

presented in figures 10, 11, and 14 and the summary data of figure 15 for configurations

BWl, BWlHV , BWlHVN1, and BWlHVN1T with 5h = -0.5 ° and the transition fixed. The
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lift curves for these configurations are linear over the angle-of-attack range investigated

at Mach numbers of 0.55 and 0.625. At M = 0.725 or greater, nonlinearities in the lift

curves occurred at lower liftcoefficients as Mach number was increased.

The pitching-moment curves exhibited nonlinearities at approximately the same

value of C L as the liftcurves with the model either becoming neutrally stable (except

BWl) or having a pitchup instability.

Lift-curve slope CLo l increased by about 10 percent up to M = 0.825 with the

addition of the tail surfaces (fig. 15(a)). The nacelles caused a further small increase

in CL_ up to M = 0.80, whereas there was no effect on CLo l of adding the flap-track

fairings.

The nacelles and flap-track fairings together (compare configurations BWIHV and

BWIHVNIT ) are seen to cause a reduction in both the stability Cmc L and in Cm, o

(fig. 15(a)). This reduction in Cm, o is 0.026 at M = 0.55 and 0.039 at M = 0.80.

This reduction in Cm, o results in CL,trim being reduced from 0.355 to 0.320 at

M = 0.55, whereas CL,trim is reduced from 0.5 to 0.3 at M = 0.80. (See figs. i0

and 11.)

The effects on minimum drag and drag at liftingconditions caused by the various

model components are shown in figure 15(b). Computed profile drag coefficients and

measured incremental drag coefficients for the tail surfaces and the nacelles are pre-

sented in figure 16. Skin-friction drag coefficients were computed by the methods of

references 5 and 6. Wetted areas, reference lengths, average Reynolds number per

meter, wind-tunnel stagnation temperature, and computed CD, p are presented in

table IV. Form factors given in chapter XXIV of reference 7 were used to obtain the pro-

file drag coefficients from the skin-friction drag coefficients. The incremental drag due

to a particular model component is nearly constant with Mach number up to M = 0.775

at each of the liftcoefficients presented (fig. 15(b)). Addition of the tails caused ml

increase in CD,mi n from 0.0049 at M = 0.55 to 0.0060 at M = 0.85 (fig. 16). This

drag increment was 0.0008 to 0.0020 higher than the computed profile drag coefficient,

probably due to some tail drag due to liftand interference of the tails on the fuselage

afterbody.

The same observations can be made for the addition of the nacelles where an inter-

ference drag of about 0.0006 is indicated up to about M = 0.775 at minimum drag condi-

tions (fig. 16). Both of the incremental drag coefficients caused from adding either the

tails or nacelles indicate drag-rise Mach numbers of about 0.775. The drag-rise Mach

number (where dCD,min/dM = 0.i) is between 0.78 and 0.80 for the complete configura-

tion BWlHVNIT (fig. 15(b)).

II



The maximum lift-drag ratio for configuration BW 1 was 20.2. (See fig. 15(c).) A

loss in L/D of about 4 occurred due to the addition of the remainder of the model com-

ponents and resulted in a value of (L/D)max of 16.2 for configuration BWlHVN1T.

Effect of Horizontal-Tail Deflection

The effect of horizontal-tail deflection for the complete configuration BWlHVN1T

with transition fixed or free can be seen by comparing the basic data of figures 11, 12,

and 13 and the summary data of figure 17 for the condition of transition fixed.

Horizontal-tail deflection had little or no effect on lift-curve slope and only a

small effect on the model stability (fig. 17(a)). The effects due to this small range of

tail deflection on CD,mi n or CD at lifting conditions (fig. 17(b)) and on (L/D)max

(fig. 17(c)) were small as expected. Trimmed drag polars are presented in figure 17(d)

where the symbols represent the trim points obtained from the pitching-moment data of

figures 11, 12, and 13 for the transition-fixed conditions.

Effect of Boundary-Layer Transition

The basic aerodynamic data for configuration BWlHVN1T for three horizontal-tail

deflections with boundary-layer transition fixed and free are presented in figures 11, 12,

and 13, and summary data are presented in figure 18. Generally, fixing transition had

little or no effect on CLa up to M = 0.825. Lift-curve slopes shown in figure 18(a)

for 5h = -0.5 ° are a typical example. The model with free transition had more lift at

high angles of attack at Mach numbers greater than 0.75 for the three tail deflections.

For the model with 5h = -0.5 ° (fig. 11), the pitching-moment curves were more

linear over a greater range of lift coefficient with transition fixed. Pitchup occurs at

approximately the same lift coefficient. However, for the model with 5h = 0o or 0.5 °

(figs. 12 and 13, respectively), the pitching-moment curves were linear over the same

range of lift coefficient with transition both free and fixed, and the lift coefficient at which

the pitchup instability occurred was substantially higher.

Shown in figure 18(a) is Cmc L for the three tail deflections with transition free

and also Cmc L for 5h = -0.5 ° with transition both fixed and free. The variation

Cmc L with transition fixed and free at the other two tail deflections (0 ° and 0.5 °) is

similar to that shown in figure 17(a). Figure 18(b) presents Cm, o data with transition

fixed and free for the three tail deflections. The model with transition free exhibited

lower stability and higher values of pitching-moment coefficient at zero lift. A compari-

son of Cmc L curves with transition fixed and free (figs. 18(a) and 18(b)) shows a rear-

ward shift in the center of pressure due to fixing transition from 5 to 10 percent of the

mean aerodynamic chord at Mach numbers up to 0.75.
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The effects on drag and lift-drag ratio of fixing transition are comparedonly for
5h = -0.5 ° in figures 18(c) and 18(d). The results for the other two tail settings are

similar. As expected, the free-transition condition exhibited lower drag and higher

(L/D)max than the fixed-transition condition.

Effect of Wing Modification

A comparison of the aerodynamic effects due to the two wing modifications for the

complete model without the flap-track fairings, with transition fixed and 5h = -0.5 °, is

shown by the basic data of figure 14 and the summary data of figure 19. These modifica-

tions, made to the basic wing (Wl) outboard of the nacelle (span station 30.07), were

intended to increase aerodynamic performance between the cruise Mach numbers of 0.78

and 0.80 and possibly to increase the cruise Mach number. Wing 2 (W2) had both a

1-percent-chord leading-edge extension and a 15-percent-chord trailing-edge extension

which resulted in the leading-edge sweep being increased from 27.58 ° to 27.68 °. Wing 3

(W3) had only a 15-percent-chord trailing-edge extension at span station 32.19 which

tapered to 0 percent chord at span station 65.67. (See figs. 3(c), 3(d), 4, and 5.) Both

wings 2 and 3 were tested with the longer nacelle. (See fig. 3(f).)

Configuration BW2HVN 2 had a higher lift-curve slope CL_ over the entire Mach

number range than that of BWlHVN1, whereas CL_ for configuration BW3HVN 2 was

higher only at Mach numbers greater than 0.775 (fig. 19(a)).

Except at the lower Mach numbers and at M = 0.85, the three wings had about the

same stability (fig. 19(a)). However, the modifications to the basic wing increased the

lift coefficient at which pitchup instabilities occurred (fig. 14). Configuration BW2HVN 2

showed no pitchup tendencies until M = 0.775.

The drag characteristics of figure 19(b) show configuration BW2HVN 2 to have lower

drag as Mach number and lift coefficient are increased. At C L = 0.3 and M = 0.8 the

drag coefficient of this configuration is 0.0058 less than that of configuration BWlHVN 1.

The drag-rise Mach number for configuration BW2HVN 2 is about 0.82 as compared with

a Mach number range from 0.78 to 0.80 for configuration BWlHVN 1. It should be noted

that the aerodynamic coefficients presented in figures 14 and 19 were computed based

upon the reference wing area of configuration BWlHVN 1. Using the actual wing area,

for example, of configuration BW2HVN 2 would decrease the drag coefficients by some

7 percent.

From the lift-drag polars of figure 14 it is obvious that significant changes in drag-

due-to-lift factor, especially at high Mach numbers, were a result of the wing modifica-

tions. Therefore, the drag-due-to-lift factor k M for each configuration has been deter-

mined by fitting the equation

13



C D = CD,mi n + kM(C L - CL,m)2

to the lift-drag polars. (See refs. 8 and 9.) The resulting drag-due-to-lift factors are

presented in figure 19(c) in product form kMA. In this form, kMA is independent of

the wing reference area used in calculating the two parameters. This equation was fitted

over a range of lift coefficients from about -0.1 to the lift coefficient just below C L for

(L/D)ma x. Also presented in figure 19(c) are the conditions for zero suction A/CLa ,

and for 100 percent suction 1/_.

The abrupt rise in the drag-due-to-lift factor for configuration BW2HVN 2 occurs

at M = 0.80 which is 0.05 higher than that for the other two configurations. This prob-

ably results from the lower thickness ratio of the modified wing and the higher critical

Mach number of the airfoil.

Lift-drag-ratio characteristics are shown in figure 19(d). Up to M = 0.725, wing

modifications have little or no effect on (L/D)max. However, at higher Mach numbers,

the modified wings display higher values of (L/D)max than those of the unmodified

wing. For example, at M = 0.80, (L/D)max for configuration BW2HVN 2 was 3.4 higher

than that for BWlHVN 1.

SUMMARY OF RESULTS

An investigation has been conducted in the Langley 16-foot transonic tunnel to

determine the longitudinal aerodynamic characteristics of a 0.062-scale, twin-turbofan

subsonic transport at Mach numbers from 0.55 to 0.85 and angles of attack from about

-2 ° to 6 ° . The Reynolds number based on wing mean aerodynamic chord varied from

2.25 x 106 to 2.70 × 106 . The effects of model-colnponent L'uildup, horizontal-tail

effectiveness, boundary-layer transition, and wing and nacelle modifications were mea-

sured. The model was mounted by using a sting-strut arrangement with the strut entering

the model through the underside of the fuselage approximately 65 percent of the fuselage

length rearward of the model nose. Strut-interference effects were measured and applied

as a correction to the data. The investigation indicated the following results:

1. For the small range of tail deflection (-0.5 ° to 0.5o), there was little or no effect

of horizontal-tail deflection on lift-curve slope, model stability, drag coefficient, or

maximum lift-drag ratio.

2. The model with free boundary-layer transition had more lift at high angles of

attack and less stability; and for tail deflections of 0 ° and 0.5 °, the lift coefficient at which

pitchup instability occurred was higher than that for the model with fixed transition. The

model with free transition had lower stability over the Mach number range tested.

14



3. The configuration with a modified wing (reduced wing thickness ratio) and longer

nacelles had greater lift at the same angle of attack and a higher lift coefficient at which

pitchup instabilities occurred than that of the basic configuration. The drag-rise Mach

number for the modified configuration was 0.02 higher than that of the basic configura-

tion, and the modified configuration had much less drag due to lift at the higher Mach
numbers.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., June 19, 1970.
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TABLE I.- WING AIRFOIL ORDINATES - Concluded

x/c

-0.0100

0

.0025

.0050

.0100

.0250

.0500

•1000

.1500

.2000

.3000

.3500

.4000

.4500

.5000

.5500

.6000

.6500

.7000

.7500

.8000

.8500

.9000

.9500

1.0000

1.0500

1.1000

1.1500

Wing 2 span stations at
32.189 and outboard -

Zu/C

0

.0040

.0105

.0135

.0190

•0284

.0385

.0489

.0559

,0608

,0670

,0685

,0694

0700

0710

0710

0710

0700

0675

0640

0590

0530

0465

0400

.0329

.0258

.0183

.0110

zl/c

0

-.0040

-.0035

-.0050

-.0070

-.0100

-.0135

-.0190

-.0365

-.0390

-.0405

-.0400

-.0394

-.0375

-.0340

-.0300

-.0259

-.0223

-.0177

-.0143

-.0102

-.0035

-.0023

.0018

.0054

.0110

Span station 32.189, c = 22.017 cm

Span station 71.928, c = 13.129 cm

(b) Wings 2 and 3

×/c

0

.0025

.0050

.0250

.0500

.1000

.1500

.2000

.3000

.3500

.4000

.4500

.5000

.5500

.6000

.6500

.7000

.7500

.8000

.8500

.9000

.9500

1.0000

1.0500

1.0900

1.1500

C_ Cn] . . .

LER/c...

Wing 3 span stations at -

32.189

7U, C ZI/C

0 0

.0(70 -.0051

30 -.0066

.0232 -.0116

.0335 -.0148

.0468 -.0200

.0549 -.0246

.0606 -.0291

.0670 -.0365

.0685 -.0390

.0694 -.0405

.0700 -.0400

.0710 -.0394

.0710 -.0375

.0710 -.0340

.0700 -.0300

.0675 -.0259

.0640 -.0223

.0590 -.0177

.0530 -.0143

.0465 -.0102

.0400 -.0035

.9329 -.0023

.0258 .0018

.0110

22.017

.0110

48.928

_u/C zz/c

0 0

.0070 -.0051

.0100 -.0066

.0232 -.0116

.0335 -.0145
i

.0464 -.0206 i

.0551 -.0248 i

.0601 -.0286

.0670 -.0365

.0680 -.0389

.0687 -.0407

.0687 -.0407 1

.0687 -.0395

.0673 -.0375 !

.0650 -.0340

.0602 -.0303

.0576 -.0260 4

.0526 -.0220 1

.0464 -.0175 i

.0400 -.0129

.0330 -.0092

.0267 -.0056

.0189 -.0017 ]

.0120 .0019
I

.0043 .0043 i

i
I

18.263

0.0049 0.0049
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TABLE II.- HORIZONTAL-TAIL AIRFOIL ORDINATES

Horizontal-tail span stations at -

x/c 0.0 7.010 15.354to 33.381

Zu/O zUo zu/c zUc
0

.0050

.0075

.0125

.0250

.0500

.0750

.I000

.1500

.2000

.2500

.3000

.3500

.4000

.5000

.6000

.7000

.9000

1.0000

c, cm . .

0

.0093

.0118

.0156

.0209

.0251

.0270

.0286

.0321

.0355

.0391

.0424

.0448

.0464

.0447

.0363

.0268

.0089

.0005

-0.0140

-.0230

-.0260

-.0306

-.0387

-.0489

-.0564

-.0619

-.0697

-.0753

-.0796

-.0827

-.0846

-.0854

-.0822

-.0694

-.0537

-.0177

-.0005

0

.0085

.0111

.0143

.0182

.0208

.0222

.0238

.0267

.0296

.0324

.0353

.0375

.0389

.0379

.0334

.0246

.0082

.0006

z//c Zu/C

-0.0114 0

-.0197 .0080

-.0223 .0100

-.0267 .0128

-.0347 .0164

-.0448 .0186

-.0516 .0200

-.0567 .0213

-.0639 .0237

-.0687 .O264

-.0726 .0288

-.0756 .0313

-.0774 .0333

-.0779 .0344

-.0751 .0349

-.0668 .0323

-.0539 .0235

-.0178 .0078

-.0006 .0010

23.843 20.838

-0.0104

-.0184

-.0213

-.0254

-.0324

-.0422

-.0485

-.0534

-.0603

-.0650

-.0685

-.0711

-.0727

-.0732

-.0716

-.0652

-.0538

-.0176

-.0010

17.262 at 15.354

9.538 at 33.381

LER/c . 0.0226 0.0188 0.0155
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TABLE III.- VERTICAL-TAIL AIRFOIL ORDINATES

Vertical-tail water line at stations -

27.62 30.97 39.37 62.0123.90

,de

0

.0017

.0034

.0050

.0084

.0167

.0334

.0501

.0668

.1002

.1336

.1670

.2004

.2338

.2672

.2859

.6144

.6326

.6660

.6994

.7328

.7662

.7996

.8330

1.0000

=_z
C

0

.0051

.0069

.0083

.0104

.0139

.0190

.0233

.0270

.0325

.0366

.0397

.0419

.0433

.0440

.0441

.0441

.0437

.0415

.0383

.0346

.0306

.0263

.0220

.0003

x/c

0

.0025

.0050

.0075

.0100

.0125

.0250

.0500

.0750

.1000

.1500

.2000

.2500

.3000

.3500

.4000

.4250

.4500

.50OO

.5500

.6000

.6500

.7000

.7500

1.0000

Z
+--

C

0

.0067

.0092

.0109

.0124

.0136

.0184

.0253

.0311

.O358

.0428

.O48O

.0515

.0539

.0551

.0554

.0554

.0554

.0552

.0532

.0496

.0449

.0393

.0329

.0004

:Lz
C

0

.0066

.0090

.0108

.0122

.0132

.0181

.0248

.0304

.0351

.0423

.0475

.0513

.0540

.0556

.0563

.0563

.0563

.0555

.0534

.0499

.0452

.0394

.0328

.0004

+z
C

0

.0060

.0083

.0099

.0112

.0126

.0173

.0237

.0285

.0328

.0396

.0448

.0486

.0514

.0530

I .0539.0539

.0539

.0531

.0516

.0490

.0450

.0394

.0328

.0005

Z
+_

0

.0060

.0083

.0099

.0112

.0126

.0173

.0237

.0285

.0328

.0396

.0448

.0486

.0514

.0530

.0539

.O539

.0539

.0531

.0516

.0490

.0450

.0394

.0328

.0013

c, cm . . . 48.330 33.670 29.174 23.139 9.764

LER/c . . 0.0060 0.0100 0.0100 0.0083 0.0083
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TABLE IV.- DATA FORCALCULATIONOF PROFILE DRAGCOEFFICIENTS

(a) Wetted areas and reference lengths

Model component

Fuselageandwing-root flap track fairings . . .
Wing .......................
Horizontal tails .................
Vertical tail ...................
Pylons ......................
Nacelles .....................
Outboard flap-track fairing ...........

Wettedarea,
am2

10 257.9
5 733.9
1 820.7
1 651.2

213.2
1 479.2

261.7

Reference length,
am

171.20

19.50

14.30

21.66

34.45

34.54

17.60

(b) Reynolds number per meter, wind-tunnel stagnation temperature, and

calculated profile drag coefficients

M

0.550

.625

.725

.750

.775

.800

.825

.850

R

10.62 x 106

11.35

11.94

12.13

12.25

12.40

12.50

12.76

Tt, OK

301

307

315

323

322

316

328

325

Values of CD, p for configurations -

BW 1 BWlHV

0.01929

BWlHVN 1

0.020930.01508

.01481

.01453

.01439

.01416

.01894

.01858

.01839

.01810

.02055

.02016

.01996

.01964

BWlHVNIT

0.02113

.02074

.02035

.02015

.01983
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L-68-988

Figure 2.- Photographs of configuration BW1HVN1T with sting strut mounted from the bottom. L-68-987
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Figure 3.- Continued.
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I Area 1114.27 cm2
17,71

ii Aspect ralio 4. DO

_. Taper ratio .40

33.38

14. 30

16.12

2384

9.54

8.54

J
i'

I
I
I

(g) Horizontal tail.

Figure 3.- Continued.
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L-OS-IIZ9

Fi9ure 4.- Photographs of configuration BW2HVN2 with sting strut mo,Jnted from the bottom. L-68-1130

32



L-68-1174

Figure 5.- Photographs of configuation BW3HVN 2 with sting strut mounted from the bottom. L-68-1172
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/

Tunnel center line
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r
35.3e

i

\

"\,\
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'\

Center of model rotatior, f (a) Sting strut through bottom of m_'de!

Cb) Sting strut lhroJgh topof model plus dlJF II?

Model station I30.1
Tunnel sta. 4084

Center of Frlodel rotation --,

/

f

/

L SUng strut

Tunnel sta 414_

35.36

Ic) Sting strut through top of model

Figure 6.- Sketch of support systems. All dimensions are in centimeters.
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(a) Sting strut through top with dummy on the bottom. L-68-781

(b) Sting strut through the top.

Figure 7.- Photographs of configuation BWI showing alternate mounting systems.

L-68- 782
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(a) M = 0.55.

Figure tO.- Longitudinal aerodynamic characteristics for configurations BW1 and BWlHV with 6h = -0.50 . Transition fixed.
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(a) Lift and stability characteristics.

Figure 19.- Effect on the aerodynamic characteristics of wing modifications with 6h = -0.5o. Transition fixed.
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Figure 19.- Continued.

91



_040,1

zzz

III

an cn 0B

I
l
I
I
l
I

o
03

Lib

I111

__-+-+--

i

i i i. i
i , i_1

i i !

1!11!

:I:MII

;111i

i

g!
;llr4

ttt- 

NHi

fill

2

I I I I

0 t_

tO

0

,..2

E

= g
m

N_ =

= g

o

92



-- CXl C',,.l

ZZZ

-I--I--I-

COl I_ m

I

E

.5
0

x
0

B

-I.-

C)

.._I

+ ! t+, i i

-+_

_+_

O "

x
t_

E

._I

CO

O "

L

o
'-- <z+

+_
,

<_

....i

NASA-Langley, 19'70 -- 2 L-7141 93




